Определение рентген: Рентген (единица измерения) — это… Что такое Рентген (единица измерения)?

Содержание

Рентген (единица измерения) — это… Что такое Рентген (единица измерения)?

У этого термина существуют и другие значения, см. Рентген.

Рентге́н — внесистемная единица экспозиционной дозы радиоактивного облучения рентгеновским или гамма-излучением, определяемая по их ионизирующему действию на сухой атмосферный воздух. Международное обозначение — R, русское — P. В переводе на метрическую систему 1 Р приблизительно равен 0,0098 Зв

Численное значение

1 рентген — доза фотонного излучения, образующего ионы, несущие 1 ед. заряда СГСЭ ((1/3)·10−9 кулон) в 1 см³ воздуха при нормальном атмосферном давлении и 0 °C. В воздухе в 1см³ образуется 2,08·109 пар ионов[1].

Системная единица — кулон на килограмм (C/kg, Кл/кг).

1 Кл/кг = 3876 Р; 1 Р = 2,57976·10−4 Кл/кг.[2]

Область применения

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Принята в 1928 году. Несмотря на то, что, например, ГОСТ 8.417—81 прямо запретил использование большинства внесистемных единиц измерения, рентген продолжает достаточно широко использоваться в технике, отчасти потому, что многие[источник не указан 633 дня] имеющиеся измерительные приборы (дозиметры) отградуированы именно в рентгенах. Впрочем, широкого распространения единица Кл/кг не получила в связи с выходом из употребления самой физической величины экспозиционной дозы. Кл/кг используется главным образом для формального перевода из рентген в системные единицы (там, где исходная величина указана в единицах экспозиционной дозы). На практике сейчас чаще пользуются системными единицами поглощённой, эквивалентной и эффективной (а также групповой, коллективной, амбиентной и др.) дозы, то есть грэями и зивертами (а также кратными/дольными производными от них).

В условиях электронного равновесия (сумма энергий образующихся электронов, покидающих данный объем, равна сумме энергий электронов, поступающих в объем) экспозиционной дозе 1 Р соответствует поглощённая доза в воздухе, равная 0,88 рад (однако эта величина отличается от дозы, которую получил бы человек, если бы он находился в таком же поле излучения — как от поглощённой дозы в ткани, так и от амбиентного эквивалента дозы Н*(d)!).

См. также

  • Рад
  • Грэй
  • Зиверт
  • Бэр — биологический эквивалент рентгена
  • Фэр — физический эквивалент рентгена

Примечания

Ссылки

Question book-4.svg
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Рентген (единица измерения) — Карта знаний

  • Рентге́н (русское обозначение: Р; международное: R) — внесистемная единица экспозиционной дозы облучения рентгеновским или гамма-излучением, определяемая по их ионизирующему действию на сухой атмосферный воздух. В Российской Федерации рентген допущен к использованию в качестве внесистемной единицы без ограничения срока с областью применения «ядерная физика, медицина». Международная организация законодательной метрологии (МОЗМ) в своих рекомендациях относит рентген к единицам измерения, «которые могут временно применяться до даты, установленной национальными предписаниями, но которые не должны вводиться, если они не используются».

Источник: Википедия

Связанные понятия

Экспозиционная доза — устаревшая характеристика фотонного излучения, основанная на его способности ионизировать сухой атмосферный воздух. Зи́верт (русское обозначение: Зв; международное: Sv) — единица измерения эффективной и эквивалентной доз ионизирующего излучения в Международной системе единиц (СИ), используется в радиационной безопасности с 1979 года. Зиверт — это количество энергии, поглощённое килограммом биологической ткани, равное по воздействию поглощённой дозе гамма-излучения в 1 Гр. До́за излуче́ния — в радиационной безопасности, физике и радиобиологии — величина, используемая для оценки степени воздействия ионизирующего излучения на любые вещества, живые организмы и их ткани. Дози́метр — прибор для измерения экспозиционной дозы, кермы фотонного излучения, поглощенной дозы и эквивалентной дозы фотонного или нейтронного излучения, а также измерение мощности перечисленных величин. Само измерение называется дозиметрией. Поглощённая до́за — величина энергии ионизирующего излучения, переданная веществу. Выражается как отношение энергии излучения, поглощённой в данном объёме, к массе вещества в этом объёме.

Упоминания в литературе

В медицинской практике используется внесистемная единица экспозиционной дозы – рентген; 1 Р = 1000 мР или 1 000 000 мкР. Это такая доза рентгеновского или γ-излучения, которая в результате своего ионизирующего воздействия образует 2·109 пар ионов в 1 см3 чистого сухого воздуха при нормальных условиях. Популярна также внесистемная единица экспозиционной дозы – рентген. Это доза γ-излучения, при которой в 1 см3 воздуха при нормальных физических условиях (температуре 0 °C и давлении 760 мм рт. ст.) образуется 2,08 x 109 пар ионов, несущих одну электростатическую единицу количества электричества. А ещё раньше использовали общеизвестную единицу – рентген. Рентгенами оценивали не энергию, а ионизирующую способность излучения. Не будем забивать голову, для простоты отметим, что рентген примерно равен раду. Икс-лучи, или рентгеновские лучи, представляют собой невидимое глазу электромагнитное излучение, которое может проникать через некоторые непрозрачные для видимого света материалы и предметы. Открытые в 1895 году немецким физиком Рентгеном, икс-лучи нашли самое разнообразное применение в жизни. Например, в медицине для выявления заболеваний внутренних органов человека. Однако применять рентгеновские лучи нужно чрезвычайно осторожно, в определенных дозах. Сильное облучение может разрушить живые ткани. Впрочем, это же свойство икс-лучей позволяет им убивать больные клетки в организме. С их помощью можно определять подлинность драгоценных камней и картин, обнаруживать скрытые дефекты в металлах и конструкциях, а также делать массу других полезных вещей. Несмотря на различные проявления поверхностной активности, полная светимость Солнца, в основном приходящаяся на оптический диапазон, крайне стабильна. Это связано со стабильностью внутренней структуры, которая поддерживается за счет равновесия сил гравитации и сил давления (газа и излучения). Однако светимость за пределами видимого диапазона (в радиодиапазоне, ультрафиолете, рентгене, гамма-лучах) может существенно изменяться как в коротком временном масштабе (вспышки), так и в длительном (11-летний цикл активности, а также более долгопериодические изменения). Активность Солнца связана с процессами в самых внешних (конвективных) слоях, а не с основным источником энергии – термоядерными реакциями в ядре. Однако даже такие небольшие вариации в поведении Солнца могут заметно влиять на земной климат. Рентген. Точнее рентген называется радиографическим исследованием, и это самый старый способ медицинской визуализации. Рентгеновские лучи проходят через тело, и на фотопленке формируется изображение. Плотные ткани, такие, как кости, выглядят ярко-белыми, а менее плотные (например, воздух в легких) выглядят темными.

Связанные понятия (продолжение)

Бэр (от биологический эквивалент рентгена; русское обозначение: бэр; международное: rem (roentgen equivalent man) ) — устаревшая внесистемная единица измерения эквивалентной дозы ионизирующего излучения. До принятия Международной системы единиц (СИ) эта единица понималась как «биологический эквивалент рентгена», в этом случае 1 бэр соответствует такому облучению живого организма данным видом излучения, при котором наблюдается тот же биологический эффект, что и при экспозиционной дозе рентгеновского… Ионизи́рующее излуче́ние (неточный синоним с более широким значением — радиа́ция) — потоки фотонов, элементарных частиц или атомных ядер, способные ионизировать вещество. Рад (русское обозначение: рад; международное: rad, от англ. radiation absorbed dose) — внесистемная единица измерения поглощённой дозы ионизирующего излучения. 1 Рад равен поглощённой дозе излучения, при которой облучённому веществу массой 1 грамм передаётся энергия ионизирующего излучения 100 эрг. 1 рад = 100 эрг/г = 0,01 Дж/кг = 0,01 Гр. А́томная едини́ца ма́ссы (русское обозначение: а.е.м.; международное: u), она же дальто́н (русское обозначение: Да, международное: Da), она же углеродная единица — внесистемная единица массы, применяемая для масс молекул, атомов, атомных ядер и элементарных частиц. Атомная единица массы определяется как 1⁄12 массы свободного покоящегося атома углерода 12C, находящегося в основном состоянии. Рентгенофлуоресцентный анализ (РФА) — один из современных спектроскопических методов исследования вещества с целью получения его элементного состава, то есть его элементного анализа. С помощью него могут быть найдены различные элементы от бериллия (Be) до урана (U). Метод РФА основан на сборе и последующем анализе спектра, возникающего при облучении исследуемого материала рентгеновским излучением. При взаимодействии с высокоэнергетичными фотонами атомы вещества переходят в возбуждённое состояние… Радиационная безопасность — состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения. Беккере́ль (русское обозначение: Бк; международное: Bq) — единица измерения активности радиоактивного источника в Международной системе единиц (СИ). Один беккерель определяется как активность источника, в котором за одну секунду происходит в среднем один радиоактивный распад. Преобразова́ние едини́ц — перевод физической величины, выраженной в одной системе единиц, в другую систему, обычно через коэффициент пересчёта. Кюри́ (русское обозначение: Ки; международное: Ci) — внесистемная единица измерения активности радионуклида. В Российской Федерации кюри допущен к использованию в качестве внесистемной единицы без ограничения срока с областью применения «ядерная физика, медицина». Международная организация законодательной метрологии (МОЗМ) в своих рекомендациях относит кюри к таким единицам измерения, «которые могут временно применяться до даты, установленной национальными предписаниями, но которые не должны вводиться… Эффекти́вная до́за (E, эД, ЭД, ранее — Эффективная эквивалентная доза) — величина, используемая в радиационной безопасности как мера риска возникновения отдаленных последствий облучения (стохастических эффектов) всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Позитро́нно-эмиссио́нная томогра́фия (позитронная эмиссионная томография, сокращ. ПЭТ, она же двухфотонная эмиссионная томография) — радионуклидный томографический метод исследования внутренних органов человека или животного. Метод основан на регистрации пары гамма-квантов, возникающих при аннигиляции позитронов с электронами. Позитроны возникают при позитронном бета-распаде радионуклида, входящего в состав радиофармпрепарата, который вводится в организм перед исследованием. Аннигиляция позитрона… Пироме́тр (от др.-греч. πῦρ «огонь, жар» + μετρέω «измеряю») — прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта преимущественно в диапазонах инфракрасного излучения и видимого света. Резерфо́рд (русское обозначение: Рд; международное: Rd) — устаревшая внесистемная единица измерения активности радиоактивного источника. Названа в честь известного британского физика Эрнеста Резерфорда (1871—1937), сделавшего существенный вклад в понимание физической природы радиоактивности. Электромагни́тные во́лны / электромагни́тное излуче́ние — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.Среди электромагнитных полей, порождённых электрическими зарядами и их движением, принято относить к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием. Шкала Хаунсфилда — количественная шкала рентгеновской плотности (радиоденсивности). Эйнште́йн (русское обозначение: Э; международное: E) — внесистемная единица количества квантов света (фотонов) определённой частоты, используемая в фотохимии. Аналогична единице количества вещества в Международной системе единиц (СИ) — молю. В одном эйнштейне содержится количество фотонов, равное числу Авогадро. Таким образом, 1 Э = 6,022 140 857(74)⋅1023 квантов монохроматического света. Барн (русское обозначение: б, бн; международное: b) — внесистемная единица измерения площади, используется в ядерной физике для измерения эффективного сечения ядерных реакций, а также квадрупольного момента. 1 барн равен 10−28 м² = 10−24 см² = 100 фм² (примерный размер атомного ядра). Определяются также кратные и дольные единицы; из них используются… Зако́н взаимозамести́мости, закон Бунзена — Роско — один из основных законов фотохимии. Концентрация продуктов фотохимической реакции пропорциональна общему количеству энергии излучения, поглощённого светочувствительным веществом вне зависимости от соотношения энергетических составляющих. Это количество равно произведению мощности излучения на время его действия — экспозиции. Иными словами, увеличение времени и увеличение мощности излучения взаимозаместимы. Закон взаимозаместимости справедлив и для… Рентгеноспектральный микроанализ (микрорентгеноспектральный анализ, электронно-зондовый рентгеноспектральный анализ, электронно-зондовый микроанализ) — методика, позволяющая с помощью электронного микроскопа или специального электронно-зондового микроанализатора («микрозонд») получить информацию о химическом составе образца в произвольно выбранном участке микроскопических размеров. Микровесы иначе нановесы, атомные весы (англ. microbalance или англ. nanobalance) — термин, используемый для обозначения… Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением (от ~100 эВ до ~1 МэВ), что соответствует длинам волн от ~103,1 до ~10−2 Å (от ~10 до ~10−3 нм). В химии, нейтронно-активационный анализ (НАА) — это ядерный процесс, используемый для определения концентраций элементов в образце. НАА позволяет дискретным образом определять элементы, так как не учитывает химическую форму образца, и сосредотачивается исключительно на ядрах элементов. Метод основан на нейтронной активации и, следовательно, требуется источник нейтронов. Образец подвергается бомбардировке нейтронами, в результате чего образуются элементы с радиоактивными изотопами, обладающими коротким… Измерение — совокупность действий для определения отношения одной (измеряемой) величины к другой однородной величине, принятой всеми участниками за единицу, хранящуюся в техническом средстве (средстве измерений). Международное атомное время (TAI, фр. Temps Atomique International) — время, в основу измерения которого положены электромагнитные колебания, излучаемые атомами или молекулами при переходе из одного энергетического состояния в другое. Плёночный химический дозиметр — прибор для измерения полученной дозы ионизирующего излучения. В качестве чувствительного элемента дозиметр использует специальную плёнку, которая темнеет под действием ионизирующего излучения. Элемента́рный электри́ческий заря́д — фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда, наблюдающегося в природе у свободных долгоживущих частиц. Равен приблизительно 1,602 176 6208(98)⋅10−19 Кл в Международной системе единиц (СИ) (4,803 204 673(29)⋅10−10 Фр в системе СГСЭ). Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие. Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др. Электронный парамагнитный резонанс (ЭПР) — физическое явление, открытое Евгением Константиновичем Завойским в Казанском государственном университете. На основе этого явления был развит метод спектроскопии, который зарегистрирован в Государственном реестре научных открытий СССР как научное открытие № 85 с приоритетом от 12 июля 1944 года . Доплеровский измеритель — общее название технических средств для измерения линейной скорости с помощью эффекта Доплера. Применение эффекта Доплера позволяет измерять скорость не только твёрдых тел, но и газообразных, жидких и сыпучих сред. Дилато́метр (от лат. dilato — расширяю и греч. μετρέω — измеряю) — измерительный прибор, предназначенный для измерения изменения размеров тела, вызванных внешним воздействием температуры, давления, электрического и магнитного полей, ионизирующих излучений или каких-либо других факторов. Наиболее важная характеристика дилатометра — его чувствительность к абсолютному изменению размеров тела. Зонд Ленгмюра — устройство, используемое для диагностики плазмы. Зондовый метод был впервые предложен Ирвингом Ленгмюром в 1923 году. Этот метод основан на измерении плотности тока заряженных частиц на помещенный в плазму электрический проводник в зависимости от его потенциала. Соответствующая кривая называется зондовой вольт-амперной характеристикой. Наибольшее распространение при исследованиях получили цилиндрический, сферический и плоский зонды. Детектор элементарных частиц, детектор ионизирующего излучения в экспериментальной физике элементарных частиц — устройство, предназначенное для обнаружения и измерения параметров элементарных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях. Инфракра́сная спектроскопи́я (колебательная спектроскопия, средняя инфракрасная спектроскопия, ИК-спектроскопия, ИКС) — раздел спектроскопии, изучающий взаимодействие инфракрасного излучения с веществами. Пикоме́тр (русское обозначение: пм; международное: pm) — дольная единица измерения длины в Международной системе единиц (СИ), равная одной триллионной (то есть 1/1.000.000.000.000) части метра, основной единицы СИ. В экспоненциальной записи представляется как 10−12 метров. Деба́й (русское обозначение: Д; международное: D) — внесистемная единица измерения электрического дипольного момента (ЭДМ) молекул. Махе — устаревшая внесистемная единица объёмной альфа-активности радиоактивного источника. Равна активности радионуклида, содержащегося в 1 л вещества и обеспечивающего посредством ионизации среды альфа-частицами ионизационный ток насыщения, равный 10−3 единицы СГС (то есть 3,336⋅10−13 А). Таким образом, один махе создаёт в 1 л вещества мощность экспозиционной дозы облучения, равную 1 микрорентгену в секунду, или 3,6 миллирентгена в час. Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения, характеризующийся чрезвычайно малой длиной волны — менее 2⋅10−10 м — и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Относится к ионизирующим излучениям, то есть к излучениям, взаимодействие которых с веществом способно приводить к образованию ионов разных знаков. Компью́терная томогра́фия — метод неразрушающего послойного исследования внутреннего строения предмета, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием… Волнодисперсионный рентгенофлуоресцентный спектрометр представляет собой прибор, позволяющий проводить полный элементный анализ, использующий для подсчёта и анализа рентгенофлуоресценцию какой-либо конкретной длины волны, дифрагированной на кристалле. Длина волны рентгеновского луча и шаг кристаллической решётки связаны законом Брэгга. В отличие от метода энергодисперсионной рентгенофлуоресценции, волнодисперсионный подсчитывает фотоны от одной длины волны, не анализируя широкий спектр длин волн… Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) — прибор класса электронный микроскоп, предназначенный для получения изображения поверхности объекта с высоким (до 0,4 нанометра) пространственным разрешением, также информации о составе, строении и некоторых других свойствах приповерхностных слоёв. Основан на принципе взаимодействия электронного пучка с исследуемым объектом. Ла́зер (от англ. laser, акроним от light amplification by stimulated emission of radiation «усиление света посредством вынужденного излучения»), или опти́ческий ква́нтовый генера́тор — это устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Определение рентгенография общее значение и понятие. Что это такое рентгенография

Рентгенография — это метод, который с помощью рентгеновских лучей позволяет получить изображение внутренней части организма . Термин также используется для обозначения фотографии, созданной с помощью этой техники.

Процедура состоит в экспонировании того, что предназначено для фотографирования источника излучения : то есть рентгеновское излучение испускается на той части тела, внутреннюю часть которой желательно наблюдать. Рентген обладает способностью пересекать мягкие ткани (органы, мышцы и т. Д.), Но не кости, которые поглощают излучение. Таким образом, при размещении специального детектора за телом рентгеновские лучи будут генерировать изображение. Кости «записаны» белым цветом, а остальные внутренние компоненты тела — разными оттенками серого в зависимости от плотности. Вакуум, наконец, остается черным.

Таким образом, рентген является фотографией, которая позволяет наблюдать за костными компонентами белым, на черном фоне. Это помогает врачу ставить разные диагнозы в зависимости от состояния костей .

Важно подчеркнуть, что, поскольку дозы облучения, которым подвергается организм, очень малы, рентгенография является безопасной процедурой с минимальными возможностями причинения вреда организму. Большинство экспертов говорят, что радиография дает нам преимущества, намного превосходящие риски, которые могут привести.

Точно так же, поскольку рентгенограммы не оказывают ощутимого влияния на наше тело, если бы не техника, шум и положение, которые операторы требуют от нас при съемке, можно сказать, что это эквивалентная процедура. сделать обычную фотографию . Несмотря на то, что рентген безболезненен, мы можем на некоторое время испытывать некоторый дискомфорт из-за поз и невозможности нормально дышать.

Эти требования, которые остаются неподвижными в определенной позиции и задерживают дыхание на несколько секунд, являются типичными для многих наиболее распространенных типов рентгенограмм, и их цель состоит в том, чтобы избежать размытых изображений, что является частым следствием, если тело находится в движении .

Прежде чем пройти рентген, пациенты должны соответствовать определенным требованиям . Например, женщины должны сообщить своему врачу, если они беременны или если у них ВМС. С другой стороны, поскольку металлические предметы могут генерировать изображения малой четкости, необходимо удалить все аксессуары из этого материала, такие как украшения, часы и ремни; для большей безопасности рекомендуется использовать больничное платье.

К числу наиболее распространенных видов рентгенограмм относятся следующие: брюшная полость ; кости; грудной клетки; зубов; конечности; рукой; суставов; шеи; из околоносовых пазух; черепа; грудного отдела позвоночника; скелета.

Радиография имеет определенные ограничения, как в физическом, так и в экономическом плане, такие как: протоколы безопасности, связанные с дозами облучения, нельзя игнорировать; как метод испытания, это очень дорого; любая несплошность, не параллельная пучку излучения, может быть трудно идентифицировать; этап после взятия является обширным и включает в себя различные дополнительные процедуры, такие как процесс изображения, сушки и интерпретации; Это не всегда дает надежные результаты.

Вне медицинской плоскости, это известно как рентгенография для исчерпывающего анализа, который развивается на предмете. Например: «Новая хроника, опубликованная аргентинским писателем, предлагает превосходный рентгеновский снимок жизни на местах», «Мы представили очень полную рентгенографию местной экономики, чтобы мэр мог проанализировать, какие из них наиболее удобны» .

описание, допустимые нормы, способы измерения

Существует множество единиц измерения дозы облучения и воздействия. Рентген – единица измерения, международная единица дозы облучения для рентгеновских лучей или гамма-лучей, названная в честь профессора Вильгельма Конрада Рентгена, человека, который изобрел рентгеновские снимки в 1895 году. Этот вид излучения помогает не только увидеть сломанные кости, но и проанализировать камни на Марсе. Рентгеновские лучи являются частью более крупного электромагнитного спектра, который варьируется от радиоволн до мощных гамма-лучей.

Рентген единица измерения ионизирующего излучения

Мария и Пьер Кюри

В 1903 году лауреаты Нобелевской премии по физике Мария и Пьер Кюри были одними из тех ученых, которые изучали и продвигали использование рентгеновских лучей. Мария Кюри, урожденная Склодовска, иммигрировала в Париж из Польши в возрасте 24 лет, чтобы продолжить учебу по математике и физике. Там она познакомилась и вышла замуж за Пьера Кюри, уважаемого физика, и вскоре они начали работать вместе, изучая различные элементы излучения, в том числе волны электромагнитной энергии.

Теперь мы знаем, что излучение может быть очень опасным, но тогда мало что об этом было известно. Мария и Пьер Кюри и их дочь Ирен, которая также работала с ними в своей лаборатории, ежедневно подвергались таким чрезвычайно высоким уровням радиации, что из-за этого все они страдали от проблем со здоровьем. Мария и Ирен управляли тысячами рентгеновских лучей на французских сражениях во время Первой мировой войны, и ничто не защищало их, кроме одежды на спине. И мать, и дочь в конце концов умерли от болезней, вызванных пагубным воздействием излучения. Даже сейчас рабочие документы Кюри (и даже их кулинарная книга) содержат такие опасные уровни радиоактивности.

Единица измерения дозы облучения рентген

Что такое рентгеновское излучение?

Рентгеновские лучи являются мощными волнами электромагнитной энергии. Волны, как и те, которые находятся в океане, – это движение энергии. Когда вы хлопаете в ладоши, энергия в этом случае звучит, начинается у источника. Звук проходит по воздуху до тех пор, пока он не достигнет вашей барабанной перепонки и не зарегистрируется как звук. Волны, которые проходят через физическую среду, подобно воздуху и воде, называются механическими волнами.

Электромагнитные (ЭМ) волны не требуют перемещения физической среды, поэтому они могут существовать как на Земле, так и в космосе, где нет воздуха для прохождения даже звуковых волн. EM-волны организованы по спектру в соответствии с расстоянием между каждой волной и частотой волн в секунду, измеренными в герцах (Гц). Волны с самыми низкими частотами и наибольшие расстояния между волнами дают относительно малое количество энергии. Радиоволны, например, имеют самые низкие частоты различных категорий волн на электромагнитном спектре, а гамма-лучи, созданные ядерными взрывами, имеют самые высокие частоты.

Рентгеновские лучи представляют собой полосу электромагнитных волн непосредственно перед гамма-лучами на ЭМ-спектре. Они находятся в дальнем конце и, наряду с гамма-лучами и некоторыми ультрафиолетовыми лучами, показаны как повреждающие ДНК. Как мы знаем из травм, полученных Пьером, Марией и их дочерью Ириной во время их рентгеновских экспериментов, рентгеновские лучи очень сильны сами по себе. Приблизительно один квинтиллион волн в секунду – это 1 000 000 000 000 000 000 Гц – мы думаем о них как о «лучах» энергии, а не о волнах.

Дайте определение единице измерения рентген

Использование рентгеновских лучей

Когда они были впервые обнаружены более 100 лет назад в 1895 году Вильгельмом Конрадом Рентгеном, рентгеновские лучи использовались во многом так же, как мы их используем сейчас, – чтобы увидеть кости внутри наших тел. Рентген часто демонстрировал рентгеновские снимки, изображая кости в руке жены. Кости и другие объекты плотнее кожи. Они поглощают достаточное количество излучения для создания теней на рентгеновской пленке и показывают нам, когда кости сломаны, или можно увидеть, проглотил ли ребенок монетку. Также рентген – единица измерения дозы облучения.

Единица измерения дозы облучения рентген

Нечто большее, чем видимый свет

Чтобы понять рентгеновские снимки, вы должны понимать, что эта форма энергии – это всего лишь тип света. Это может заставить вас думать о видимом свете (свет, который можно увидеть с помощью человеческого глаза). Но в науке свет – это нечто большее, чем просто видимый свет. Свет является синонимом электромагнитного спектра, который представляет собой группировку связанных типов энергии. Электромагнитный спектр чаще всего рассматривается как диаграмма, которая варьируется от радиоволн до гамма-лучей. На электромагнитном спектре рентгеновские лучи упорядочены рядом с гамма-лучами (на стороне высоких энергий спектра). Итак, когда вы слышите слово «рентгеновское излучение», просто подумайте о свете высокой энергии.

Рентген единица измерения

Вещи, которые вы не можете видеть

Пространство состоит из миллиардов звезд и галактик, которые, кажется, бесконечно выходят в космос. Хотя эти вещи можно увидеть с помощью мощного телескопа, есть некоторые вещи, которые совершенно невидимы, такие как гамма-лучи и рентгеновские лучи. В то время как вы не можете видеть эти мощные волны энергии, они имеют схожие и разные свойства, которые делают их уникальными и важными в современном мире.

Гамма-лучи и рентгеновские лучи представляют собой как формы электромагнитного излучения, так и волны, которые содержат энергию и движутся со скоростью света. При рассмотрении электромагнитного спектра обе волны можно найти в левой части видимой области, потому что они имеют более короткие длины волн. Более короткие длины волн означают, что частота и энергия волн очень велики. Эти свойства очень полезны, потому что они могут путешествовать через объекты. Гамма и рентгеновские лучи используются для визуализации, особенно для осмотра внутренних органов и костей. Кроме того, такие лучи используются в промышленных целях для производства продуктов и технологий.

Хотя гамма-лучи и рентгеновские лучи сходны в некоторых аспектах, они различаются по длине волны и тому, как они развиваются. Гамма-лучи имеют гораздо более высокую частоту и более короткую длину волны, чем рентгеновские. Гамма-лучи исходят от радиоактивных атомов, которые распадаются и излучают энергию.

Некоторые выбросы опасны для организмов и не могут быть остановлены бумагой, сталью или свинцом. Рентгеновские лучи исходят из перегруппировки электронов внутри атома. Рентген может быть вредным в зависимости от количества и места воздействия, поэтому меры предосторожности принимаются в медицинских и промышленных условиях, где используются рентгеновские лучи.

1 рентген – это единица измерения

Что такое ионизирующее излучение?

Прежде чем дать определение единице измерения – рентгену, нужно разобраться, что такое радиация. Это очень общий термин, используемый для описания любого процесса, который передает энергию через пространство или материал вдали от источника. Световые, звуковые и радиоволны – все это примеры радиации. Однако, когда большинство людей думают об излучении, они думают об ионизирующем радиационном излучении, которое может разрушить атомы и молекулы внутри тела. Хотя ученые думают об этих выбросах в очень математических терминах, их можно визуализировать либо как субатомные частицы, либо как лучи.

Что такое ионизация? Атомы состоят из сравнительно больших частиц (протонов и нейтронов), сидящих в центральном ядре, на орбите которых расположены более мелкие частицы (электроны): миниатюрная солнечная система. Обычно число протонов в центре атома равно числу электронов на орбите. Ионом является любой атом или молекула, которая не имеет нормального количества электронов. Ионизирующее излучение представляет собой любой вид излучения, который обладает достаточной энергией для детонации электронов из атомов или молекул, создавая ионы.

Рентген единица

Как измеряется ионизирующее излучение?

Измерение лежит в основе современной науки, но само число не передает никакой информации. Полезные измерения необходимы как инструмент для измерения (например, палка ,чтобы отмерять длину) и соглашение о единицах, которые будут использоваться (например, дюймы, метры или мили). Выбранные единицы измерения будут отличаться с целью измерения. Например, повар будет измерять масло с точки зрения столовых ложек, чтобы обеспечить вкус еды, а диетолог может больше заботиться о измерении калорий, чтобы определить влияние еды на здоровье.

Разнообразие единиц, используемых для измерения радиации и радиоактивности, иногда смущает даже ученых, если они не применяют их каждый день. Может быть полезно иметь в виду назначение различных единиц. Существуют две основные причины измерения излучения: изучение физики и изучение биологических эффектов излучения. Что создает сложность, так это то, что наши инструменты измеряют физические эффекты, в то время как некоторые из них представляют интерес для биологических эффектов. Еще одно осложнение состоит в том, что единицы, как и слова любого языка, могут исчезнуть из использования и быть заменены новыми единицами.

Радиация не представляет собой ряд различных событий, таких как радиоактивные распады, которые могут учитываться индивидуально. Измерение радиации навалом – это как измерение движения песка в песочных часах; более полезно думать об этом как о непрерывном потоке, а не о серии отдельных событий. Интенсивность пучка ионизирующего излучения измеряется путем подсчета количества ионов, которые он создает в воздухе. Рентген в час – единица измерения, которая отображает способность рентгеновских лучей ионизировать воздух. Это единица воздействия, которая может быть измерена непосредственно.

Рентген единица измерения ионизирующего излучения

Рентген – единица измерения ионизирующего излучения

Рентгеновские лучи являются частью электромагнитного спектра, длина волны которого меньше видимого. В разных применениях используются разные части рентгеновского спектра. Рентгеновские лучи составляют рентгеновское излучение, форму электромагнитного излучения. Большинство рентгеновских лучей имеют длину волны от 0,01 до 10 нанометров, что соответствует частотам в диапазоне от 30Гц до 30 эксагерц (3 × 1016Гц до 3 × 1019Гц) и энергиям в диапазоне 100 эВ до 100 кэВ. Длина рентгеновских лучей короче, чем у УФ-лучей, и обычно длиннее, чем у гамма-лучей.

Рентген – единица измерения, которая является традиционной единицей экспозиции, которая представляла собой количество излучения, необходимое для создания одного электростатического блока заряда каждой полярности в одном кубическом сантиметре сухого воздуха. Влияние ионизирующей радиации на вещество (особенно живую ткань) более тесно связано с количеством энергии, осажденном в них, а не с генерируемого заряда. 1 рентген – это единица измерения, составляющая 2,58 × 10-4 С / кг. Эта мера поглощенной энергии называется поглощенной дозой.

это метод исследования внутренней структуры объектов при помощи рентгеновских лучей. Отзывы, противопоказания

Рентгенография – это один из способов исследования, основанный на получении фиксированного рентгеновского изображения на определенном носителе, чаще всего в этой роли выступает рентгеновская пленка.

Новейшие цифровые аппараты могут фиксировать такое изображение еще и на бумаге или на экране дисплея.

Основана рентгенография органов на прохождении лучей через анатомические структуры организма, в результате которого и получается проекционное изображение. Чаще всего рентген используется в качестве диагностического метода. Для большей информативности выполнять рентгеновские снимки лучше в двух проекциях. Это позволит более точно определить расположение исследуемого органа и наличие патологии, если таковая имеется.

рентгенография это

Наиболее часто прибегают к исследованию грудной клетки с использованием такого метода, но рентген других внутренних органов также можно сделать. Рентген-кабинет имеется практически в каждой поликлинике, поэтому пройти такое исследование не составит особого труда.

С какой целью проводится рентгенография

Этот вид исследования проводится в целях диагностики специфических поражений внутренних органов при инфекционных заболеваниях:

  • Воспалении легких.
  • Миокардите.
  • Артрите.

Выявить заболевания органов дыхания и сердца с помощью рентгена также возможно. В некоторых случаях при наличии индивидуальных показаний проведение рентгенографии необходимо для исследования черепа, позвоночного столба, суставов, органов пищеварительного тракта.

Показания к проведению

Если для диагностирования некоторых заболеваний рентген является дополнительным методом исследования, то в некоторых случаях его назначают как обязательный. Обычно это бывает, если:

  1. Имеется подтвержденное поражение легких, сердца или других внутренних органов.
  2. Необходимо проконтролировать эффективность терапии.
  3. Есть необходимость проверить правильность установки катетера и эндотрахеальной трубки.

Рентгенография – это метод исследования, который применяют повсеместно, он не представляет особой сложности как для медперсонала, так и для самого пациента. Снимок является таким же медицинским документом, как и другие заключения исследований, поэтому может предъявляться разным специалистам для уточнения или подтверждения диагноза.

Чаще всего каждый из нас проходит рентгенографию грудной клетки. Основными показателями для ее проведения являются:

  • Длительный кашель, сопровождающийся болью в груди.
  • Выявление туберкулеза, опухолей легких, пневмонии или плеврита.
  • Подозрение на тромбоэмболию легочной артерии.
  • Имеются признаки сердечной недостаточности.
  • Травматическое повреждение легких, переломы ребер.
  • Попадание инородных тел в пищевод, желудок, трахею или бронхи.
  • Профилактический осмотр.
проведение рентгенографии

Довольно часто, когда требуется пройти полное обследование, рентгенография назначается в числе прочих методов.

Преимущества рентгена

Несмотря на то что многие пациенты опасаются лишний раз получать дозу облучения, проходя рентгенографию, этот метод имеет много преимуществ по сравнению с другими исследованиями:

  • Он не только самый доступный, но и вполне информативный.
  • Довольно высокое пространственное разрешение.
  • Для прохождения такого исследования не нужна специальная подготовка.
  • Рентгеновские снимки можно хранить длительное время для контроля динамики лечения и выявления осложнений.
  • Дать оценку снимку могут не только врачи-рентгенологи, но и другие специалисты.
  • Есть возможность проводить рентгенографию даже лежачим больным с помощью мобильного аппарата.
  • Этот метод также считается одним из самых дешевых.

Так что, если хотя бы раз в год проходить такое исследование, вреда организму не причинишь, а вот выявить серьезные заболевания на начальном этапе развития вполне возможно.

Методы проведения рентгенограммы

В настоящее время существует два способа проведения рентгенограммы:

  1. Аналоговый.
  2. Цифровой.

Первый из них более старый, проверенный временем, но требующий некоторого времени, чтобы проявить снимок и увидеть на нем результат. Цифровой метод считается новым и сейчас он постепенно вытесняет аналоговый. Результат выводится сразу на экран, и можно его распечатать, причем не один раз.

рентгенография органов

Цифровая рентгенография имеет свои преимущества:

  • Существенно повышается качество снимков, а значит информативность.
  • Простота проведения исследования.
  • Возможность получения мгновенного результата.
  • Снижается лучевая нагрузка.
  • На компьютере есть возможность обработки результата с изменением яркости и контраста, что позволяет более точно выполнить количественные измерения.
  • Результаты могут храниться длительное время в электронных архивах, можно даже по интернету передавать их на расстояния.
  • Экономическая эффективность.

Минусы рентгенографии

Несмотря на многочисленные преимущества метод рентгенографии имеет и свои недостатки:

  1. Изображение на снимке получается статичным, что не дает возможности оценить функциональность органа.
  2. При исследовании мелких очагов информативность недостаточная.
  3. Плохо выявляются изменения в мягких тканях.
  4. Ну и, конечно, нельзя не сказать про отрицательное влияние ионизирующего излучения на организм.

Но как бы там ни было, рентгенография – это метод, который продолжает оставаться самым распространенным для выявления патологий легких и сердца. Именно он позволяет выявить туберкулез на ранней стадии и спасти миллионы жизней.

Подготовка к прохождению рентгенографии

Этот метод исследования отличается тем, что предварительно не требует проведения специальных подготовительных мероприятий. Требуется только в назначенное время прийти в рентген-кабинет и сделать рентгенографию.

Если такое исследование назначается с целью обследования пищеварительного тракта, то потребуются следующие способы подготовки:

  • Если нет отклонений в работе ЖКТ, то специальных мер принимать не следует. При избыточном метеоризме или запорах рекомендовано поставить очистительную клизму за 2 часа до исследования.
  • При наличии в желудке большого количества пищи (жидкости) следует сделать промывание.
  • Перед проведением холецистографии используют рентгеноконтрастный препарат, который проникает в печень и накапливается в желчном пузыре. Чтобы определить сократительную способность желчного пузыря, пациенту дают желчегонное средство.
  • Чтобы холеграфия была более информативна, перед ее проведением вводят внутривенно контрастное вещество, например «Билигност», «Билитраст».
  • Предваряют ирригографию контрастной клизмой с сульфатом бария. Перед этим больной должен выпить 30 г касторового масла, вечером сделать очистительную клизму, не ужинать.

Техника проведения исследования

рентген кабинет

В настоящее время практически все знают, где сделать рентген, что собой представляет данное исследование. Методика его проведения заключается в следующем:

  1. Пациента ставят перед рентгеновским аппаратом, если требуется, то исследование проводят в положении сидя или лежа на специальном столе.
  2. При наличии вставленных трубок или шлангов необходимо удостовериться, что они не сместились во время подготовки.
  3. До окончания исследования пациенту запрещено совершать какие-либо движения.
  4. Медицинский работник перед началом рентгенографии покидает помещение, если его присутствие обязательно, то надевает свинцовый фартук.
  5. Снимки чаще всего делаются в нескольких проекциях для большей информативности.
  6. После проявления снимков проверяют их качество, при необходимости может потребоваться повторное исследование.
  7. Для уменьшения проекционного искажения необходимо часть тела помещать как можно ближе к кассете.

Если рентгенография проводится на цифровом аппарате, то изображение отображается на экране, и врач может сразу видеть отклонения от нормы. Результаты сохраняются в базе данных и могут длительное время храниться, при необходимости можно распечатать на бумаге.

Как проводится интерпретация результатов рентгенографии

После проведения рентгенографии необходимо правильно интерпретировать ее результаты. Для этого врач оценивает:

  • Расположение внутренних органов.
  • Целостность костных структур.
  • Расположение корней легких и их контрастность.
  • Насколько различимы главные и мелкие бронхи.
  • Прозрачность легочной ткани, наличие затемнений.
рентгеновские снимки

Если проводилась рентгенография черепа, то необходимо выявить:

  • Наличие переломов.
  • Выраженную внутричерепную гипертензию с увеличением головного мозга.
  • Патологию «турецкого седла», которая появляется в результате повышенного внутричерепного давления.
  • Наличие опухолей мозга.

Чтобы поставить правильный диагноз, результаты рентгенографического исследования обязательно надо сопоставить с другими анализами и функциональными пробами.

Противопоказания к проведению рентгенографии

Всем известно, что лучевые нагрузки, которые испытывает организм во время проведения такого исследования, могут приводить к радиационным мутациям, несмотря на то что они совсем незначительные. Чтобы риск свести к минимуму, необходимо делать рентген только строго по назначению врача и с соблюдением всех правил защиты.

Надо различать диагностическую и профилактическую рентгенографию. Первая практически не имеет абсолютных противопоказаний, но необходимо помнить, что всем подряд ее делать также не рекомендуется. Такое исследование должно быть оправдано, не стоит самому себе его назначать.

Даже во время беременности, если с помощью других методов не удается поставить правильный диагноз, не запрещено прибегать к рентгенографии. Риск для пациента всегда меньше того вреда, который может принести вовремя не выявленное заболевание.

В целях профилактики рентгенографию нельзя делать беременным женщинам и детям до 14 лет.

Рентгенографическое исследование позвоночника

Рентгенография позвоночника проводится достаточно часто, показаниями для ее проведения являются:

  1. Боли в спине или конечностях, появление чувства онемения.
  2. Выявление дегенеративных изменений в межпозвоночных дисках.
  3. Необходимость выявить травмы позвоночника.
  4. Диагностирование воспалительных заболеваний позвоночного столба.
  5. Обнаружение искривлений позвоночника.
  6. Если есть необходимость распознать врожденные аномалии развития позвоночника.
  7. Диагностирование изменений после оперативного вмешательства.
рентгенография позвоночника

Проводится процедура рентгенографии позвоночника в положении лежа, предварительно надо снять с себя все украшения и раздеться по пояс.

Врач обычно предупреждает, что во время обследования нельзя двигаться, чтобы снимки не получились смазанными. Процедура не занимает более 15 минут и пациенту не доставляет неудобства.

Имеются свои противопоказания для проведения рентгенографии позвоночника:

  • Беременность.
  • Если в последние 4 часа было сделано рентгеновское исследование с применением соединения бария. В этом случае снимки качественными не получатся.
  • Ожирение также не позволяет получить информативные снимки.

Во всех остальных случаях этот метод исследования не имеет противопоказаний.

Рентген суставов

Такая диагностика является одним из основных методов исследования костно-суставного аппарата. Рентгенография суставов может показать:

  • Нарушения в структуре суставных поверхностей.
  • Наличие костных разрастаний по краю хрящевой ткани.
  • Участки отложения кальция.
  • Развитие плоскостопия.
  • Артриты, артрозы.
  • Врожденные патологии костных структур.

Такое исследование помогает не только выявить нарушения и отклонения, но и распознать осложнения, а также определиться с тактикой лечения.

Показаниями к рентгенографии суставов могут быть:

  • Боль в суставе.
  • Изменение его формы.
  • Болевые ощущения во время движений.
  • Ограниченная подвижность в суставе.
  • Полученная травма.
рентгенография суставов

Если есть необходимость пройти такое исследование, то лучше спросить у лечащего врача, где сделать рентген суставов, чтобы получить максимально достоверный результат.

Требования к проведению лучевого исследования

Чтобы рентгенологическое исследование дало наиболее эффективный результат, оно должно проводиться с соблюдением некоторых требований:

  1. Исследуемая область должна располагаться в центре снимка.
  2. Если имеется повреждение трубчатых костей, то на снимке обязательно должен быть виден один из смежных суставов.
  3. При переломе одной из костей голени или предплечья на снимке должны быть зафиксированы оба сустава.
  4. Желательно проводить рентгенографию в разных плоскостях.
  5. Если есть патологические изменения в суставах или костях, то необходимо делать снимок симметрично расположенного здорового участка, чтобы можно было сравнить и оценить изменения.
  6. Для постановки правильного диагноза качество снимков должно быть высоким, иначе потребуется повторная процедура.

Если соблюдать все эти рекомендации, то можно не сомневаться, что рентгенография даст максимально информативный результат.

Как часто можно проходить рентгенографию

Влияние облучения на организм зависит не только от длительности, но и интенсивности воздействия. Доза напрямую зависит также и от оборудования, на котором проводится исследование, чем оно новее и современнее, тем она ниже.

Также стоит учитывать, что для различных участков тела имеется своя норма облучения, так как все органы и ткани имеют разную чувствительность.

Проведение рентгенографии на цифровых аппаратах снижает дозу в несколько раз, поэтому на них ее проходить можно чаще. Понятно, что любая доза вредна для организма, но стоит также понимать, что рентгенография – это исследование, которое может обнаружить опасные заболевания, вред от которых для человека гораздо больший.

Рентген (единица измерения) — Roentgen (unit)

Рентген или Рентген ( г ɛ н т ɡ ə п , — dʒ ə п / ) (символ R ) является устаревшим единицей измерения для воздействия на рентгеновских лучей и гамма — лучей . Она определяется как электрический заряд освобожденного от такого излучения в заданном объеме воздуха , деленной на массу этого воздуха. В 1928 году было первым международным количество измерений для ионизирующего излучения , чтобы определить для радиационной защиты , и был легко тиражироваться методом измерения ионизации воздуха непосредственно с помощью ионной камеры . Он назван в честь немецкого физика Рентген , который открыл рентгеновские лучи.

Хотя относительно легко измерить, рентген имел тот недостаток , что она была лишь мера ионизации воздуха , а не прямое измерение поглощения излучения в других материалах. Как наука о радиационной дозиметрии разработана, он понял , что ионизирующее действие, и , следовательно , повреждение тканей, были связаны с поглощенной энергией, а не только радиоактивным облучением. Следовательно , новые радиометрические единицы для радиационной защиты были определены , которые приняли это во внимание. В 1953 году Международная комиссия по радиационным единицам и измерениям (МКРЕ) рекомендовал Rad, равную 100 эрг / г, в качестве единицы измерения нового количества радиации , поглощенной дозы . Был высказан радиан в когерентном СГСЕ. В 1975 году аппарат серый был назван в качестве единицы СИ поглощенной дозы. Серого была равна 100 рад, блок СГС.

Additonally, новая величина КЕРМА была определена для ионизации воздуха, а это современная метрологический, но не радиационная защита, преемник roengten, и от этого поглощенной доза может быть рассчитана с использованием известных коэффициентов для конкретных целевых материалов. В радиационной защите поглощенная доза является поглощением энергии , которая является показателем возможных последствий острых тканей происходят при высоких нормах расхода, и от низких уровней поглощенной дозы в эквивалентной дозе , представляющего риск для здоровья стохастического, может быть вычислена; для которых существующие системы СИ единицы используются в серый цвет (Гр) и зиверт (Зв) соответственно.

Roengten была пересмотрена на протяжении многих лет. Это был последним определяются США Национального института стандартов и технологии (NIST) в 1998 году как 6996258000000000000 ♠2,58 × 10 -4  C / кг , с рекомендацией о том , что определение даваться в каждом документе , где используются рентген. Один Рентген отложения 0,00877 оттенков серого (0,877 РАУ ) от поглощенной дозы в сухом воздухе, или 0,0096 Гр (0,96 рад) в мягких тканях. Один Рентгена рентгеновских лучей может депонировать в любом месте от 0,01 до 0,04 Гр ( от 1,0 до 4,0 рад) в костной ткани в зависимости от энергии пучка. Эта ткань-зависимый переход от кермы к поглощенной дозе называется F-фактор в радиотерапии контекстах. Преобразования зависят от энергии ионизирующей эталонной среды, которая является неоднозначной в последнем определении NIST.

история

Рентген имеет свои корни в блоке Villard , определенной в 1908 году American Society Рентген Ray , как «количество излучения , которое высвобождает ионизацией один ESU электроэнергии в см 3 воздуха при нормальных условиях температуры и давления.» Используя 1 ESU ≈ 3,33564 × 10 -10  C и плотность воздуха ~ 1.293 кг / м при 0 ° C и 101 кПа, это превращается в 2,58 × 10 -4  C / кг, что современное значение задается NIST.

1  ESU / см 3 × 3,33564 × 10 -10  С / ESU × 1000000  см 3 / м 3 ÷ 1,293  кг / м 3 = 2,58 × 10 -4  C / кг

Это определение было использовано под разными названиями ( е , R , и немецкая часть излучения ) в течение следующих 20 лет. В то же время, французский Рентген получил другое определение , которое составило 0,444 немецкой R.

определения ICR

В 1928 году Международный конгресс радиологии (ICR) определил рентген , как «количество рентгеновского излучения , которое, когда вторичные электроны полностью использованы , и эффект стенки камеры можно избежать, производят в 1 см атмосферного воздуха при температуре от 0 ° С и 76 см давления ртути такой степени , что проводимость 1 ESU заряда измеряется при токе насыщения «. Указано 1 куб.см воздуха будет иметь массу 1,293 мг при условиях , указанных, так что в 1937 году МЦР переписал это определение в терминах этой массы воздуха вместо объема, температуры и давления. 1937 определение было также распространено на гамма — лучей, но позже ограничен на 3 МэВ в 1950 году.

определение ГОСТ

СССР Всесоюзный комитет стандартов (ГОСТ) тем временем принял существенно другое определение рентгена в 1934 году ГОСТ стандарт 7623 определила его как «физическую дозу рентгеновского излучения , который производит дополнительные расходы каждого из одной электростатической единицы по величине в см 3 облученного объема на воздухе при 0 ° С и нормальном атмосферном давлении , когда ионизации завершена «. Различие физической дозы от дозы вызвала путаницу, некоторые из которых , возможно, привело Cantrill и Паркер отчет о том , что Рентген был стать сокращение для 83 эрг на грамм (0,0083 Гр ) ткани. Они назвали эту производную величину , то бэр физический (РЭП) , чтобы отличить его от рентгена ICR.

определение МКРЗ

Введение единицы измерения Рентген, который при измерении опирался на ионизацию воздуха, заменены более ранние менее точные методы , которые полагались на таймерной экспозиции, экспозиции пленки, или флуоресценции. Это привело к тому, как к установлению пределов воздействия, а также Национальный совет по радиационной защите и измерениям в США установил первый официальный предел дозы в 1931 году 0,1 рентгена в день. Международный комитет защиты Радия рентгеновская и , в настоящее время известный как Международная комиссия по радиологической защите (МКРЗ) вскоре последовал с лимитом 0,2 рентгена в день в 1934 г. В 1950 годе МКРЗ уменьшенную рекомендованные их предел до 0,3 рентгена в неделю для все тело экспозиция.

Международная комиссия по радиационным единицамам и измерениям (МКР) приняла определение рентгена в 1950 году, определив его как «количество Х или гамма-излучения таким образом, что связанно корпускулярно выбросы на 0.001293 г воздуха производит в воздухе, ионы несущего 1 электростатической единицы количества электричества каждого знака «. 3 МэВ крышка уже не входит в определение, но непригодное полезность этого устройства при высоких энергиях пучка был упомянут в сопроводительном тексте. В то же время, новая концепция бэр была разработана (бэр).

Начиная с 1957 года, МКРЗ начал публиковать свои рекомендации в отношении вещных и Рентген был заброшен. Рентгенография сообщество по- прежнему имеет необходимость измерения ионизации, но они постепенно превращали в использовании C / кг в наследство оборудование было заменено. МКРЕ рекомендовал переопределение рентген , чтобы быть точно 2,58 × 10 -4  С / кг в 1971 году.

Европейский Союз

В 1971 году Европейское экономическое сообщество , в директиве 71/354 / ЕЕС , каталогизированы единицы измерения , которые могут быть использованы «для … общественного здравоохранения … целей». Директива включала кюри , рад , бэр и как рентген допустимых единиц, но требуется, чтобы использование Rad, бэр и рентгена быть рассмотрены до 31 декабря 1977 г. Этот документ определил точно , как рентген 2,58 × 10 -4  Кл / кг, в соответствии с рекомендацией МКРА. Директива 80/181 / ЕЕС , опубликованный в декабре 1979 года, которая заменила директиву 71/354 / ЕЕС, явно каталогизирован в сером , Беккереле и зиверт для этой цели , и требовала , чтобы кюри, рад, рем и рентген быть прекращены к 31 декабря 1985 ,

определение NIST

Сегодня Рентген редко используется, и Международный комитет мер и весов (МКМВ) никогда не принимал использование рентгена. С 1977 по 1998 году, переводы США NIST в брошюрах СИ заявили , что CIPM временно приняла использование рентгена (и другие подразделения радиологии) с единицами СИ с 1969 г. Однако, только связанное с решением МК показаны в приложении, в отношении к кюри в 1964 году брошюры NIST определил как рентген 2,58 × 10 -4  C / кг, чтобы быть использовано с воздействием х или гамма — излучения, но не указывается средство для того чтобы быть ионизированы. Текущая брошюра SI МК в исключает Рентгена из таблиц внесистемных единиц , принятых для использования с СИ. США NIST уточнено в 1998 году , что она предоставляет свои собственные интерпретации системы СИ, в результате чего она принята Рентген для использования в США с СИ, признавая при этом, что CIPM не сделал. К тому времени, ограничение х и гамма — излучениям было сброшено. NIST рекомендует определение рентгена в каждом документе , где используется данное устройство. Продолжающееся использование рентгена сильно обескуражен NIST.

Разработка запасных радиометрических величин

Внешние современные величины излучения, используемые в радиационной защите

В то время как удобное количество для измерения с воздуха ионной камеры, причем Рентген тот недостаток , что он не был прямой мерой либо интенсивности рентгеновских лучей или их поглощения, а скорее измерение ионизирующего эффекта рентгеновского излучения в конкретное обстоятельство; который был сухой воздух при температуре 0  ° С и 1 стандартной атмосферой давления.

Из-за этого Рентген имел переменную отношение к количеству энергии, поглощенной дозы на единицу массы в материале мишени, так как различные материалы имеют различные характеристики поглощения. Как наука о радиационной дозиметрии разработана, это воспринималось как серьезный недостаток.

В 1940 году Луи Гарольд Грей, который изучает влияние повреждения нейтронов на ткани человека, вместе с Уильям Валентайн Мейнорд и радиобиолога Джон Рид, опубликовал статью , в которой единица измерения, дублировал « грамм Рентген » (символ: г) определяется как «такое количество нейтронного излучения , который производит приращение энергии в единице объема ткани , равной приращению энергии , производимой в единицу объема воды на один рентгена радиации» был предложен. Это устройство было установлено, что эквивалентно 88 эрг в воздухе. В 1953 году МКРЕ рекомендовал рад , равную 100 эрг / г, в качестве нового единицы измерения поглощенной радиации. Было высказано радиан в когерентных СГС единиц.

В конце 1950 — х года Генеральная конференция по мерам и весам (CGPM) предложила МКР присоединиться к другим научным органам работать с Международным комитетом мер и весы (МК) в разработке системы единиц , которые могут быть использованы последовательно в течение многих дисциплины. Это тело, первоначально известная как «комиссия по системе единиц», переименованный в 1964 году в качестве «Консультативного комитета по Units» (CCU), отвечал за развитие Международной системы единиц (СИ). В то же время он становится все более очевидным , что определение рентгена было несостоятельно, и в 1962 году она была пересмотрена. ЦБУ решили определить единицу СИ поглощенной радиации с точки зрения энергии на единицу массы, которая в единицах MKS был Дж / кг. Это было подтверждено в 1975 году 15 ГКМВ, и блок был назван «серый» в честь Луи Гарольд Грей, который умер в 1965 году серый был равен 100 рад. Определение рентгена имело притяжение быть относительно просто определить для фотонов в воздухе, но серый цвет не зависит от первичных ионизирующего излучения типа, и может быть использовано как для кермы и поглощенной дозу в широком диапазоне материи.

При измерении поглощенной дозы у человека из — за внешнее воздействие, блок СИ серого , или не связанный с СИ радиана используется. Из них могут быть разработаны эквиваленты дозы рассмотреть биологические эффекты от отличаясь типов излучения и материалов мишени. Эти эквивалентная доза , и эффективная доза , для которых единицы СИ зиверт или не-СИ бэры используются.

Радиационно-связанные величины

В следующей таблице приведены величины излучения в СИ и внесистемных единиц:

Смотрите также

Рекомендации

внешняя ссылка

Рентгенография и рентгеноскопия — Студопедия

Рентгеноскопия и рентгенография являются основными методами рентгенологического исследования. Для изучения различных органов и тканей создан целый ряд специальных аппаратов и методов (рис. 2-3). Рентгенография по-прежнему очень широко используется в клинической практике. Рентгеноскопия применяется реже из-за относительно высокой лучевой нагрузки. К рентгеноскопии вынуждены прибегать там, где рентгенография или неионизирующие методы получения информации недостаточны. В связи с развитием КТ роль классической послойной томографии снизилась. Методика послойной томографии применяется при исследовании легких, почек и костей там, где отсутствуют кабинеты КТ.

Рентгеноскопия (греч. scopeo — рассматривать, наблюдать) — исследование, при котором рентгеновское изображение проецируется на флюоресцирующий экран (или систему цифровых детекторов). Метод позволяет проводить статическое, а также динамическое, функциональное изучение органов (например, рентгеноскопия желудка, экскурсия диафрагмы) и контролировать проведение интервенционных процедур (например, ангиографии, стентирования). В настоящее время при использовании цифровых систем изображения получают на экране компьютерных мониторов.

К основным недостаткам рентгеноскопии относятся относительно высокая лучевая нагрузка и трудности в дифференциации «тонких» изменений.

Рентгенография (греч greapho — писать, изображать) — исследование, при котором получают рентгеновское изображение объекта, фиксированное на пленке (прямая рентгенография) или на специальных цифровых устройствах (цифровая рентгенография).


Различные варианты рентгенографии (обзорная рентгенография, прицельная рентгенография, контактная рентгенография, контрастная рентгенография, маммография, урография, фистулография, артрография и пр.) используются с целью улучшения качества и увеличения количества получаемой диагностической информации в каждой конкретной клинической ситуации. Например, контактную рентгенографию используют при снимках зубов, а контрастную — для проведения экскреторной урографии.

Методики рентгенографии и рентгеноскопии могут применяться при вертикальном или горизонтальном положении тела пациента на стационарных или палатных установках.

Традиционная рентгенография с использованием рентгенологической пленки или цифровая рентгенография остается одной из основных и широко применяемых методик исследования. Это связано с высокой экономичностью, простотой и информативностью получаемых диагностических изображений.


При фотографировании объекта с флюоресцирующего экрана на пленку (обычно небольшого размера — фотопленка специального формата) получают рентгеновские изображения, применяющиеся обычно для массовых обследований. Эта методика называется флюорографией. В настоящее время она постепенно выходит из употребления вследствие замены ее цифровой рентгенографией.

Недостатком любого вида рентгенологического исследования является его невысокая разрешающая способность при исследовании малоконтрастных тканей. Применявшаяся для этой цели ранее классическая томография не давала желаемого результата. Именно для преодоления этого недостатка и была создана КТ.

Устройста МРТ томографа, блок схема.

Обзор аппаратуры

На рисунке представлена схема основных систем магнитно-резонансного томографа и некоторые из основных разводок. Этот обзор кратко обозначит функцию каждого из них. Некоторые из них будут подробно описаны в этой главе.

Вверху схемы расположены компоненты томографа, находящиеся в комнате сканирования магнитно-резонансного томографа. Поле Bo, необходимое для процесса сканирования, создается магнитом (magnet). Для создания градиента в Bo по направлениям X, Y и Z, внутри магнита расположены градиентные катушки (gradient coils). Внутри градиентных катушек находится РЧ катушка (RF coil). РЧ катушка создает магнитное поле B1, необходимое для поворота спинов на 90o или 180o. РЧ катушка также регистрирует сигнал от спинов внутри тела. Пациент располагается на управляемом компьютером столе пациента (patient table). Точность установки позиции составляет 1 мм. Комната сканирования окружена РЧ экраном (RF shield). Экран предупреждает излучение РЧ-импульсов с большой энергией за пределы клиники. Он также защищает томограф от различных РЧ сигналов от теле- и радиостанций. Некоторые комнаты сканирования окружены также магнитным экраном, который предупреждает магнитное поле от распространения слишком далеко по территории клиники. Современные магниты имеют магнитный щит, встроенный в магнит.

«Сердцем» томографа является компьютер (computer). Он контролирует все компоненты томографа. Источник РЧ-импульсов (RF source) и программатор импульсов (pulse programmer) являются РЧ компонентами, находящимися под контролем компьютера. Источник генерирует синусоиду нужной частоты. Программатор импульсов придает им форму sinc импульсов. РЧ усилитель (RF amplifier) увеличивает мощность импульсов от милливатт до киловатт. Компьютер также управляет программатором градиентных импульсов (gradient pulse programmer), который определяет вид и амплитуду каждого из трех градиентных полей. Градиентный усилитель (gradient amplifier) увеличивает мощность градиентных импульсов до уровня, достаточного для управления градиентными катушками.

Матричный процессор (array processor), имеющийся у некоторых томографов — это устройство, позволяющее проводить двумерное преобразование Фурье за доли секунды. Компьютер передает преобразование Фурье этому, более быстрому, устройству.

Оператор томографа производит ввод в компьютер через консоль управления (control console). Отображающая последовательность выбирается и модифицируется на консоли. Оператор может просматривать изображения на дисплее, расположенном на консоли, или распечатывать их на фотопринтере (film printer).

Следующие три части этой главы дают более подробное описание магнита, градиентных катушек, РЧ катушек и РЧ детекторе магнитно-резонансного томографе.

Магнит

Магнит является самой дорогой частью магнитно-резонансного томографа. Большинство магнитов являются сверхпроводящими. Это фотография сверхпроводящего магнита томографа силой 1.5 Тл. Сверхпроводящий магнит — это электромагнит сделанный из проводника, обладающего сверхпроводимостью. Провод, сделанный из сверхпроводящего материала, охлажденный жидким гелием до температуры, близкой к абсолютному нулю (-273.15o C или 0 K), имеет почти нулевое сопротивление. После пропускания тока по катушке, он продолжает проходить по ней пока катушка содержится при температуре жидкого гелия. (Некоторые потери происходят в связи с бесконечно малым сопротивлением катушки. Эти потери за год имеют размерность миллионных долей от основного магнитного поля.)

На следующем рисунке показано поперечное сечение сверхпроводящего магнита томографа. Длина сверхпроводящей проволоки обычно составляет несколько километров. Катушка провода охлаждается до температуры 4.2К, погружением в жидкий гелий (liquid helium). Катушка и жидкий азот находятся в большом криостате (или сосуде Дьюара). Этот сосуд обычно окружен сосудом Дьюара с жидким азотом (77.4К), который выполняет роль термоизолятора между комнатной температурой (293К) и жидким гелием.

лучей — свойства, определение, длина волны, типы, использование, изобретение

    • Классы
      • Класс 1-3
      • Класс 4-5
      • Класс 6-10
      • Класс 11-12
    • КОНКУРСНЫЙ ЭКЗАМЕН
      • BNAT 000 NC
        • 000 NC Книги
          • Книги NCERT для класса 5
          • Книги NCERT для класса 6
          • Книги NCERT для класса 7
          • Книги NCERT для класса 8
          • Книги NCERT для класса 9
          • Книги NCERT для класса 10
          • Книги NCERT для класса 11
          • Книги NCERT для класса 12
        • NCERT Exemplar
          • NCERT Exemplar Class 8
          • NCERT Exemplar Class 9
          • NCERT Exemplar Class 10
          • NCERT Exemplar Class 11
          • 9000 9000
          • NCERT Exemplar Class
            • Решения RS Aggarwal, класс 12
            • Решения RS Aggarwal, класс 11
            • Решения RS Aggarwal, класс 10
            • 90 003 Решения RS Aggarwal класса 9
            • Решения RS Aggarwal класса 8
            • Решения RS Aggarwal класса 7
            • Решения RS Aggarwal класса 6
          • Решения RD Sharma
            • RD Sharma Class 6 Решения
            • Решения RD Sharma
            • Решения RD Sharma класса 8
            • Решения RD Sharma класса 9
            • Решения RD Sharma класса 10
            • Решения RD Sharma класса 11
            • Решения RD Sharma класса 12
          • PHYSICS
            • Механика
            • Оптика
            • Термодинамика Электромагнетизм
          • ХИМИЯ
            • Органическая химия
            • Неорганическая химия
            • Периодическая таблица
          • MATHS
            • Теорема Пифагора
            • 0004
            • 000300030004
            • Простые числа
            • Взаимосвязи и функции
            • Последовательности и серии
            • Таблицы умножения
            • Детерминанты и матрицы
            • Прибыль и убыток
            • Полиномиальные уравнения
            • Разделение на фракции
          • 000
          • 000
          • 000
          • 000
          • 000 Microology
          • 000
          • 000
          • 000 BIOG3000
              ФОРМУЛЫ
              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрия Fo
      ,

      ray — определение для изучающих английский язык из словаря учащихся Merriam-Webster

      Рентгеновский глагол

      или Рентгеновский / Ɛksˌreɪ /

      рентгеновские лучи; рентген; рентгеновский

      или Рентгеновский / Ɛksˌreɪ /

      рентгеновские лучи; рентген; рентгеновский

      Определение X – RAY учащимися

      [+ объект]

      : исследовать и делать изображения (таких вещей, как кости и органы внутри тела) с помощью рентгеновских лучей ,

      Рентген | Определение, история и факты

      Рентгеновское , электромагнитное излучение с чрезвычайно короткой длиной волны и высокой частотой, с длинами волн от примерно 10 -8 до 10 -12 метров и соответствующими частотами примерно от 10 16 до 10 20 герц ( Гц).

      электромагнитный спектр Связь рентгеновского излучения с другим электромагнитным излучением в пределах электромагнитного спектра. Encyclopædia Britannica, Inc.

      Британская викторина

      Тест на медицинские условия и открытия

      Что такое тахикардия, обычно возникающая в результате физических упражнений или стресса?

      Рентгеновские лучи обычно образуются при ускорении (или замедлении) заряженных частиц; примеры включают пучок электронов, падающий на металлическую пластину в рентгеновской трубке, и циркулирующий пучок электронов в ускорителе синхротронных частиц или накопительном кольце.Кроме того, высоковозбужденные атомы могут излучать рентгеновские лучи с дискретными длинами волн, характерными для расстояний между уровнями энергии в атомах. Рентгеновская область электромагнитного спектра находится далеко за пределами видимого диапазона длин волн. Однако прохождение рентгеновских лучей через материалы, в том числе биологические ткани, можно регистрировать с помощью фотопленок и других детекторов. Анализ рентгеновских снимков тела — чрезвычайно ценный инструмент медицинской диагностики.

      Рентгеновские лучи — это форма ионизирующего излучения — при взаимодействии с веществом они обладают достаточной энергией, чтобы заставить нейтральные атомы выбрасывать электроны.Благодаря этому процессу ионизации энергия рентгеновских лучей откладывается в веществе. Проходя через живую ткань, рентгеновские лучи могут вызывать вредные биохимические изменения в генах, хромосомах и других компонентах клетки. Биологические эффекты ионизирующего излучения, которые являются сложными и сильно зависят от продолжительности и интенсивности воздействия, все еще активно изучаются ( см. радиационное поражение). Рентгеновская лучевая терапия использует эти эффекты для борьбы с ростом злокачественных опухолей.

      Рентгеновские лучи были открыты в 1895 году немецким физиком Вильгельмом Конрадом Рентгеном при исследовании влияния электронных лучей (тогда называемых катодными лучами) на электрические разряды через газы низкого давления. Рентген обнаружил поразительный эффект, а именно, что экран, покрытый флуоресцентным материалом, помещенный вне разрядной трубки, будет светиться, даже если он защищен от прямого видимого и ультрафиолетового света газового разряда. Он пришел к выводу, что невидимое излучение трубки проходит через воздух и вызывает флуоресценцию экрана.Рентген смог показать, что излучение, ответственное за флуоресценцию, исходит из точки, где электронный луч ударяется о стеклянную стенку разрядной трубки. Непрозрачные объекты, помещенные между трубкой и экраном, оказались прозрачными для новой формы излучения; Рентген наглядно продемонстрировал это, сделав фотографическое изображение костей человеческой руки. Его открытие так называемых рентгеновских лучей было встречено во всем мире научным и популярным энтузиазмом, и, наряду с открытиями радиоактивности (1896 г.) и электрона (1897 г.), оно положило начало изучению атомного мира и эре современной физики. ,

      Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня ,

      Рентген | Определение, история и факты

      Рентгеновское , электромагнитное излучение с чрезвычайно короткой длиной волны и высокой частотой, с длинами волн от примерно 10 -8 до 10 -12 метров и соответствующими частотами примерно от 10 16 до 10 20 герц ( Гц).

      электромагнитный спектр Связь рентгеновского излучения с другим электромагнитным излучением в пределах электромагнитного спектра. Encyclopædia Britannica, Inc.

      Британская викторина

      Тест на медицинские условия и открытия

      Что означает тромбоз?

      Рентгеновские лучи обычно образуются при ускорении (или замедлении) заряженных частиц; примеры включают пучок электронов, падающий на металлическую пластину в рентгеновской трубке, и циркулирующий пучок электронов в ускорителе синхротронных частиц или накопительном кольце.Кроме того, высоковозбужденные атомы могут излучать рентгеновские лучи с дискретными длинами волн, характерными для расстояний между уровнями энергии в атомах. Рентгеновская область электромагнитного спектра находится далеко за пределами видимого диапазона длин волн. Однако прохождение рентгеновских лучей через материалы, в том числе биологические ткани, можно регистрировать с помощью фотопленок и других детекторов. Анализ рентгеновских снимков тела — чрезвычайно ценный инструмент медицинской диагностики.

      Рентгеновские лучи — это форма ионизирующего излучения — при взаимодействии с веществом они обладают достаточной энергией, чтобы заставить нейтральные атомы выбрасывать электроны.Благодаря этому процессу ионизации энергия рентгеновских лучей откладывается в веществе. Проходя через живую ткань, рентгеновские лучи могут вызывать вредные биохимические изменения в генах, хромосомах и других компонентах клетки. Биологические эффекты ионизирующего излучения, которые являются сложными и сильно зависят от продолжительности и интенсивности воздействия, все еще активно изучаются ( см. радиационное поражение). Рентгеновская лучевая терапия использует эти эффекты для борьбы с ростом злокачественных опухолей.

      Рентгеновские лучи были открыты в 1895 году немецким физиком Вильгельмом Конрадом Рентгеном при исследовании влияния электронных лучей (тогда называемых катодными лучами) на электрические разряды через газы низкого давления. Рентген обнаружил поразительный эффект, а именно, что экран, покрытый флуоресцентным материалом, помещенный вне разрядной трубки, будет светиться, даже если он защищен от прямого видимого и ультрафиолетового света газового разряда. Он пришел к выводу, что невидимое излучение трубки проходит через воздух и вызывает флуоресценцию экрана.Рентген смог показать, что излучение, ответственное за флуоресценцию, исходит из точки, где электронный луч ударяется о стеклянную стенку разрядной трубки. Непрозрачные объекты, помещенные между трубкой и экраном, оказались прозрачными для новой формы излучения; Рентген наглядно продемонстрировал это, сделав фотографическое изображение костей человеческой руки. Его открытие так называемых рентгеновских лучей было встречено во всем мире научным и популярным энтузиазмом, и, наряду с открытиями радиоактивности (1896 г.) и электрона (1897 г.), оно положило начало изучению атомного мира и эре современной физики. ,

      Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня ,

Отправить ответ

avatar
  Подписаться  
Уведомление о